Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy
نویسندگان
چکیده
Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process.
منابع مشابه
Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud.
Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKC(C)-type MADS-box genes were identified in the pear genome and character...
متن کاملTranscriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy.
The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular func...
متن کاملPhysiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia).
The regulatory mechanisms underlying bud breaking (scale leaf elongation) and flowering in the lateral flower buds of Japanese pear (Pyrus pyrifolia Nakai 'Kosui') are unknown. To more fully characterize these processes, we treated pear trees with different amounts of chilling initiated at different times. Chilling for ∼900 h at 6 °C always induced bud breaking (scale elongation in ≥70% lateral...
متن کاملComparative Transcriptome Analysis of the Less-Dormant Taiwanese Pear and the Dormant Japanese Pear during Winter Season
The flower bud transcriptome in the less dormant Taiwanese pear 'Hengshanli' and high-chilling requiring Japanese pear strain TH3 subjected to the same chilling exposure time were analyzed during winter using next-generation sequencing. In buds sampled on January 10th and on February 7th in 2014, 6,978 and 7,096 genes, respectively, were significantly differentially expressed in the TH3 and 'He...
متن کاملFine mapping of the gene for susceptibility to black spot disease in Japanese pear (Pyrus pyrifolia Nakai)
Black spot disease, which is caused by the Japanese pear pathotype of the filamentous fungus Alternaria alternata (Fries) Keissler, is one of the most harmful diseases in Japanese pear cultivation. We mapped a gene for susceptibility to black spot disease in the Japanese pear (Pyrus pyrifolia Nakai) cultivar 'Kinchaku' (Aki gene) at the top of linkage group 11, similar to the positions of the s...
متن کامل